Rectal Microbicides

Ian McGowan MD PhD FRCP

Magee Womens Research Institute
University of Pittsburgh, USA
Overview

- Rationale for rectal microbicide development
- Non-clinical evaluation of rectal microbicide candidates
- Design of Phase 1 rectal safety studies
- Rectal microbicide advocacy
- Implications for vaginal microbicide development
Rationale for Rectal Microbicide Development
Rectosigmoid Anatomy
Heterosexual Anal Intercourse in the US

- Gross M et al. 2000
- Civic D et al. 2000
- Mosher WD et al. 2005
- Erickson PI et al. 1995

(%) Lifetime experience of AI

(%) Lifetime experience of AI
EX-US Prevalence of Female RAI

US HIV Incidence in MSM

Sifakis F et al. JAIDS 2007
N-9 Effect on Rectal Epithelium

Baseline
+ 15 minutes
+ 15 minutes
+ 2 hours
+ 2 hours
+ 8 hours

Phillips et al. Contraception 2004
Effect of Osmolality on Mucosal Integrity

Iso-osmolar Hyperosmolar

Fuchs et al J Infect Dis 2007
Non-Clinical Evaluation of Rectal Microbicide Candidates
MTN Algorithm

Products

Formulation Testing
- Osmolarity, pH, viscosity, in vitro release

In vitro Testing
- Dose Range
 - Cell lines
 - Lactobacillus
- HIV efficacy

Ex vivo Testing
- Cervical/colorectal tissue
- Absorption, permeability, and safety
- HIV efficacy

Human Studies
Product Safety

TFV 1% vs Placebo

<table>
<thead>
<tr>
<th></th>
<th>Active Drug</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osmolarity</td>
<td>3347 nmol/kg</td>
<td>3189 nmol/kg</td>
</tr>
<tr>
<td>pH</td>
<td>4.45</td>
<td>4.39</td>
</tr>
</tbody>
</table>

Iso-osmolar is 290 nmol/kg

SPL7013 vs Placebo

<table>
<thead>
<tr>
<th></th>
<th>Active Drug</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osmolarity</td>
<td>683 nmol/kg</td>
<td>803 nmol/kg</td>
</tr>
<tr>
<td>pH</td>
<td>5.25</td>
<td>4.86</td>
</tr>
</tbody>
</table>
Rectal Model Development

Macaca nemestrina
Rectal Lavage Assay

Lavage fluid

Day 4
Combo Animal

Day 4, T0
24 hrs post 3rd application

Day 4, T30 post 4th application

*Microbicides 2008 Poster #TA-057
Design of Phase 1 Rectal Safety Studies
UC-781 Trial Design

Screening Enrollment Baseline Endoscopy Randomization

0.1% 0.25% Placebo

Single dose 2nd Endoscopy 7 single Doses 3rd Endoscopy
UC-781 Phase 1 Rectal Safety Study

- **Secondary Objective:**
 - To determine whether use of study product is associated with rectal mucosal damage

- **Endpoints:**
 - Epithelial sloughing
 - Histopathology
 - Mucosal mononuclear cell phenotype
 - Mucosal cytokine mRNA
 - Mucosal immunoglobulins
 - Fecal calprotectin
 - Explants- Mucosal cytokine mRNA and susceptibility to HIV infection
Interim Results

• Appears safe and well-tolerated
• Subjects highly compliant
• Procedures well tolerated
• No drop outs/withdrawals
• No Grade 3 or 4 AE
• No procedure related AE
• 7 Grade 2 AE reported in 4 of 19 individuals completing
Explant Infection Kinetics After Single Dose of UC-781

Cumulative P-24 of explants at V3
(Viral_inoculum=10000, Biopsy_location=10cm, Visit_code=V3)

Days Post Explant Infection
MMC Phenotypes

<table>
<thead>
<tr>
<th>Group</th>
<th>% CCR5+ on CD4+</th>
</tr>
</thead>
<tbody>
<tr>
<td>U19 (All) (n=27)</td>
<td></td>
</tr>
<tr>
<td>U19 (Non-resp) (n=9)</td>
<td></td>
</tr>
<tr>
<td>U19 (Med) (n=9)</td>
<td></td>
</tr>
<tr>
<td>U19 (Responder) (n=9)</td>
<td></td>
</tr>
<tr>
<td>HPTN056 (n=8, v=24)</td>
<td></td>
</tr>
</tbody>
</table>

Group: V2 V3 V5
Rectal Specific Applicators

- Incorporates Fleet™ tip
- Can be operated with one hand
- Has grips for the fingers
- Can deliver a precise dose up to 10 ml
- Used across clinical trials, this MDD will reduce sources of acceptability and adherence variability
- Can be manufactured in gray color
SPECT Linearization
Rectal Lymphocyte Distribution

\(^{99m}\text{Tc}-\text{Sulfur Colloid}\)
\(^{111}\text{In}-\text{Lymphocytes}\)

Cell-free HIV Surrogate
Cell-Associated HIV Surrogate
Normal Anal Canal

Epithelial Abrasion
Target Cells in Anal & Rectal Tissue

Rectal

Anal
Future Phase 1 Rectal Microbicide Safety Studies

<table>
<thead>
<tr>
<th>Product</th>
<th>Status</th>
<th>Timeline</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC-781</td>
<td>Ongoing</td>
<td></td>
<td>NIAID/DAIDS</td>
</tr>
<tr>
<td>Polyanion</td>
<td>Planned</td>
<td>Q3 2008</td>
<td>NIAID/DMID</td>
</tr>
<tr>
<td>PRO-2000</td>
<td>Planned</td>
<td>Q2 2008</td>
<td>MDP MRC-UK</td>
</tr>
<tr>
<td>MTN-007</td>
<td>Planned</td>
<td>Q3 2008</td>
<td>NIAID/DAIDS</td>
</tr>
<tr>
<td>MTN-006</td>
<td>Planned</td>
<td>Q3 2008</td>
<td>NIAID/DAIDS</td>
</tr>
<tr>
<td>UC-781 (RF)</td>
<td>Possible</td>
<td>Q4 2010</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Rectal Microbicide Advocacy
A Global Force in Rectal Microbicide Advocacy

500+ members
40 countries
6 continents
Implications for Vaginal Microbicide Development
Impact of Rectal Sex on Power

Transmission Probability: 1X, 10X, 20X
Behavior at Enrollment by Arm in HPTN-059

<table>
<thead>
<tr>
<th></th>
<th>Coitally Dependent</th>
<th>Daily Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tenofovir</td>
<td>Placebo</td>
</tr>
<tr>
<td></td>
<td>N=50</td>
<td>N=51</td>
</tr>
<tr>
<td>Ever anal sex</td>
<td>24%</td>
<td>25%</td>
</tr>
<tr>
<td>Anal sex,</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>(past 7 days)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

- Increasing evidence of RAI in heterosexuals and MSM
- Phase 1RM safety design evolving
- New animal models
 - NHP repeated low dose
 - Humanized mouse
- Research focus needs to shift from safety to efficacy
Acknowledgements

David Geffen School of Medicine
Peter Anton MD

St Georges Hospital Medical School
Robin Schattock PhD
Martin Cranage PhD

International Partnership for Microbicides
Zeda Rosenberg PhD

University of Oxford
William James PhD

University of Pittsburgh
Sharon Hillier PhD

Johns Hopkins Medical School
Craig Hendrix MD